CC12-Computer Science (52)

THEORY OF COMPUTATION

> The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

Answer any four questions from the following $\quad 3 \times 4=12$

1. Describe the difference between the languages described by the following two regular expressions:
(a) $a^{*} b^{*}$
(b) $(a b)^{*}$
2. What is CFG? Give an example.
3. Differentiate between NFA and DFA.
4. Construct the NFA that accepts the language generated by the R.E.

$$
a b * a a+b b a * a b
$$

5. Test the grammar for ambiguity.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AB} \\
& \mathrm{~A} \rightarrow \mathrm{aA} \mid \epsilon \\
& \mathrm{B} \rightarrow \mathrm{ab}|\mathrm{bB}| \epsilon
\end{aligned}
$$

6. Find the equivalent CFG with no useless symbols

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{ABC} \mid \mathrm{BaB} \\
& \mathrm{~B} \rightarrow \mathrm{bBb} \mid \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{aA}|\mathrm{BaC}| \mathrm{aaa} \\
& \mathrm{C} \rightarrow \mathrm{CA} \mid \mathrm{AC}
\end{aligned}
$$

GROUP-B

Answer any four questions from the following $\quad 6 \times 4=24$
7. Find the regular expression for the language accepted by the following automata

UG/CBCS/B.Sc./Hons./5th Sem./Computer Science/COMSCC12/2021

8. Construct the DFA for the following grammar:

$$
\mathrm{S} \rightarrow \mathrm{abS} \mid \mathrm{a}
$$

9. Let G be a grammar:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aAS} \mid \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{SbA}|\mathrm{SS}| \mathrm{ba}
\end{aligned}
$$

Derive a string "aabbaa" using left most and right most derivations.
10. Let a grammar G be

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{bA} \mid \mathrm{aB} \\
& \mathrm{~A} \rightarrow \mathrm{bAA}|\mathrm{aS}| \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{aBB}|\mathrm{bs}| \mathrm{b}
\end{aligned}
$$

convert this grammar to CNF.
11. Design a PDA for the language $a^{n} b^{n}$.
12. Write a short note on Turing Machine.

GROUP-C

Answer any two questions from the following

13. Write an algorithm to convert regular expression to finite automata. Using your algorithm convert the following RE to equivalent NFA.

$$
r=(a \mid b) *(a \mid b) a b
$$

14. Define grammar. Explain different types of grammar with proper examples.
15. Write an algorithm to minimize the number of states of a DFA. Find the minimized DFA of the RE,

$$
\mathrm{r}=(0 \mid 11) * 100
$$

16. Write short notes on the following:
(a) Push Down Automata
(b) Regular expression.
