UG/CBCS/B.Sc./Hons./5th Sem./Computer Science/COMSCC12/2021

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 5th Semester Examination, 2021

CC12-COMPUTER SCIENCE (52)

THEORY OF COMPUTATION

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

	Answer any <i>four</i> questions from the following	3×4 = 12
1.	Describe the difference between the languages described by the following two regular expressions:	3
	(a) a^*b^* (b) $(ab)^*$	
2.	What is CFG? Give an example.	3
3.	Differentiate between NFA and DFA.	3
4.	Construct the NFA that accepts the language generated by the R.E. ab * aa + bba * ab	3
5.	Test the grammar for ambiguity. $S \rightarrow AB$ $A \rightarrow aA \mid \epsilon$ $B \rightarrow ab \mid bB \mid \epsilon$	3
6.	Find the equivalent CFG with no useless symbols $S \rightarrow ABC \mid BaB$ $B \rightarrow bBb \mid a$ $A \rightarrow aA \mid BaC \mid aaa$ $C \rightarrow CA \mid AC$	3

GROUP-B

Answer any *four* questions from the following

 $6 \times 4 = 24$

7. Find the regular expression for the language accepted by the following automata

8.	Construct the DFA for the following grammar:	6
	$S \rightarrow abS \mid a$	
9.	Let G be a grammar:	6
	$S \rightarrow aAS \mid a$	
	$A \rightarrow SbA \mid SS \mid ba$	
	Derive a string "aabbaa" using left most and right most derivations.	
10.	Let a grammar G be	6
	$S \rightarrow bA \mid aB$	
	$A \rightarrow bAA \mid aS \mid a$	
	$B \rightarrow aBB \mid bs \mid b$	
	convert this grammar to CNF.	
11.	Design a PDA for the language $a^n b^n$.	6
12.	Write a short note on Turing Machine.	6

GROUP-C

	Answer any two questions from the following	$12 \times 2 = 24$
13.	Write an algorithm to convert regular expression to finite automata. Using your algorithm convert the following RE to equivalent NFA.	12
	$r = (a \mid b) * (a \mid b)ab$	
14.	Define grammar. Explain different types of grammar with proper examples.	12
15.	Write an algorithm to minimize the number of states of a DFA. Find the minimized DFA of the RE,	12
	r = (0 11) * 100	
16.	Write short notes on the following:	$6 \times 2 = 12$
	(a) Push Down Automata	
	(b) Regular expression.	

_____X_____